Wednesday, 28 March 2012

Immersion Through Video Games 3

Link:http://illumin.usc.edu/107/immersion-through-video-games/3/

Dynamic Systems

Games have always tried to move beyond the linearity of movies and novels. Techniques such as content randomization and writing stories with many paths and endings were the first attempts, and a third, potentially revolutionary method has recently arisen. Based on games like Dungeons & Dragons and Warhammer that play out in dynamic, storyteller-driven worlds, real time strategy and role-playing games began to develop. The real-time strategy genre relies on scripted, movie-like sequences to tell its story, whereas role-playing games often make use of complicated conversation systems. Both, however, tread on untested ground in terms of gameplay. In either genre, the player is dropped into the world and told to make of it what he will. There is always a goal to achieve--a warlord to defeat or an artifact to find-- but the means of achieving that goal are left open to the player.
This results in a tremendously complicated design and programming process, but can give rise to an unparalleled range of freedom in terms of gameplay. The player can choose from an infinite number of strategies, because their imagination is the only limit to how they can proceed. As in life, we are given a set of abilities, skills, and procedures, and we are free to use them as we will. Thus, a giant leap is made towards immersion.

The Next Step: Emergence

The steps that were taken by these two genres to bring their gameplay into existence are the very steps that are now being researched as a way of removing the narrative restrictions on all kinds of video games. The technique is called emergence, and is one of the new frontiers in game artificial intelligence. In his book Professional Game Design, Troy Dunniway describes emergence as an efficiency tool:
The designer . . . can code in every possibility with a simple if/then type of structure, or a programmer can come up with a general system for these problems. . . One of the interesting aspects to designing a game based on systems is that, even when you've tested the game to death, someone still comes up with a new and innovative solution. As long as this new solution doesn't break the game, it can be a lot of fun [3].
Efficient game implementation is certainly a welcome side effect to emergence, but the observation that it is impossible to test exhaustively implies that the technique has far broader implications.

Emergent Systems Design

Emergence is unpredictable behavior from the computer through systemic level design, which is the process of designing a high concept of what the game should be like, and inventing rules that, when combined, result in the intended "system." The system adds consistency that would be a painful process to implement through traditional scripting. For example, if the player is hit by a fireball in a system that understands the relationship between fire and flammability, then they will be burned, and maybe even catch fire. From this, the player will determine that fire causes damage, and that objects can be set on
 fire [4]. Later when the player sees a group of powerful monsters hiding in the forest, a fireball thrown at the trees may be an obvious solution. The system knows that trees light on fire, and moments later they do. Pretty soon, the whole forest is ablaze, and the monsters are burnt marshmallows.

No comments:

Post a Comment